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The Formation and Evolution of Fractal Structure 
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In this paper we examine in detail the formation and evolution of fractal 
structure in the chaotic attractors of nonlinear dynamical systems. We explicitly 
obtain the fractal structure of the underlying chaotic attractors of low-dimen- 
sional systems and study their evolution as a system parameter is varied. Using 
periodic enumeration, dimensional, and f(~) spectral techniques, we obtain a 
detailed characterization of the multifractal structure. 

1. INTRODUCTION 

One of the major problems in nonlinear dynamics is to quantify a 
system when it is in a chaotic state (Auerbach et al., 1987; Gunaratne and 
Procaccia, 1987). In certain cases where there is an underlying strange 
attractor it is possible to make statistical predictions about the evolution of 
the system. The evolution dynamics is contained within the structure of the 
attractor. Hence it is important to understand and quantify the evolution 
of structure within attractors. In this paper we examine in detail the 
formation and evolution of fractal structure in the chaotic attractors of 
simple low-dimensional nonlinear dynamical systems. 

The problem is a fundamental and universal one underlying many 
areas of nonlinear physics (Halsey et al., 1986). Many areas of physics 
present us with a perplexing variety of complicated fractal objects and 
strange sets. Notable examples include configurations of Ising spins at 
critical points (Wilson, 1979), the region of high vorticity in fully developed 
turbulence (Mandelbrot, 1977; Aref and Siggia, 1981; Procaccia, 1984), 
percolating clusters and their backbones (de Arcangelis et al., 1985), and 
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diffusion-limited aggregates (Witten and Sander, 1981). The essence of the 
physics of these problems is to characterize the fractal objects and to 
describe the events occurring on them (Halsey et al., 1986). This probabil- 
ity measure enables us to treat the problem statistically and to make 
statistical predictions about the evolution of the system. For example, in 
dynamical systems theory most physical systems in a (deterministic) chaotic 
state have an associated strange attractor in phase space and this attractor 
contains all the information about the behavior of the system. (The relative 
distribution of points on the attractor is a probability measure for the 
system in the chaotic state.) In diffusion-limited aggregation single 
molecules perform a random walk until they become attached on an 
aggregate producing attractive random fractals reminiscent of certain bio- 
logical growth patterns or the Lictenberg figures of electrical breakdown on 
insulating surfaces (Meakin et al., 1985; Stanley and Meaken, 1988; 
Schroeder, 1991). In this case one is interested in the probability of a 
random walker landing next to a given site on the aggregate. In percolation 
one may be interested in the distribution of voltages across the different 
elements in a random-resistor network (de Arcangelis et al., 1985; Stauffer, 
1985). In general one can describe such events if one can determine the 
structure of the underlining fractal set. However, this task is made difficult 
by the complicated nature of these sets--they are multifractal (Halsey et  
al., 1986; Procaccia, 1987). 

In this paper we examine in detail the formation and evolution of 
fractal structure in the chaotic attractors of both linear and nonlinear 
dynamical systems. We explicitly obtain the fractal structure of the under- 
lying chaotic attractors of low-dimensional systems and study their evolu- 
tion as a system parameter is varied. It has been shown by Feigenbaum et 
al. (1986, 1989) that from a detailed knowledge of the f(ct) spectrum it is 
possible, in certain cases, to infer the underlining scaling structure of the 
map. Using periodic enumeration, dimensional, and f(~) spectral tech- 
niques, we obtain a detailed characterization of the fractal structure. The 
paper is divided into sections. In Section 2 we study in detail the formation 
and evolution of fractal structure on the one-dimensional chaotic attractor 
of the circle map. In Section 3 Cantor sets are studied in terms of the 
generalized dimensions and their scaling indices. The results of this section 
are critical to the study of the formation and evolution of chaotic attractors 
in higher-dimensional systems. In Sections 4 and 5 we examine the hypo- 
thesis that in two-dimensional hyperbolic systems a chaotic attractor is the 
product of a one-dimensional surface and a one-dimensional Cantor set 
(Wiggins, 1988). We examine this in detail by obtaining explicitly and 
studying in detail the fractal structure in two-dimensional linear and 
nonlinear dynamical systems. In Section 6 the formation of fractal struc- 
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ture in higher-dimensional dynamical systems is also studied and the 
Cantor structure of  the three-dimensional nonuniform toral map obtained. 
In three dimensions we find that these Cantor sets can have both a 
one-dimensional and a two-dimensional structure. Some of  the difficulties 
associated with characterizing higher-dimensional fractal structures are 
addressed. 

2. THE SIMPLE CIRCLE MAP 

One of  the simplest chaotic one-dimensional maps is the map of  the 
circle which is given by 3 

Xi + l = A X i  m o d  1 (1) 

This is hyperbolic for all values of  A excluding A = _ 1. For A < 111 we 
have periodic solutions, while for A >I l l  we have chaotic solutions. This 
map is not a homeomorphism, since it is not one-to-one and therefore its 
inverse is not defined. Since this map is defined on a circle X = 0 is 
equivalent to X = 1. The Lyapunov exponent 2 is given by 

2 = ln[A[ (2) 

This is positive for A > 1. The possibility of  divergence and bounded 
trajectories causes the map to stretch the interval and fold a portion of  the 

3The examples we use in this paper can be motivated as special cases of the periodically kicked 
rotator (Schuster, 1988): 

d 2 r  F d~ ~(t nT), n integer - ~ +  - ~ = ^ : t # ' )  = ~ - 

where ~ is the angular displacement of the rotator, F is the damping constant, and we have 
normalized the moment of inertia to unity. A simple change of variables, x = ~b, y = d~/dt ,  
and z = t, enables us to write the forced rotator equation as a set of first-order nonlinear 
autonomous differential equations: 

dx dy ~ dz 
. . . . .  dt - y'  dt F y + K f ( x )  ~ 6 ( z - n T ) ,  -~ = 1 

n = O  

The evolution of the rotator between kicks can be obtained by integrating between the limits 
(n + 1 ) T - e  > t > n T - e  to give 

1 - -e  - r r  
Xn + l = Xn + - - - - ' ~  [yn + Kf(Xn)], yn + l = e - r r [ y n  + Kf(xn)] 

This two-dimensional discrete map is essentially a stroboscopic picture of the time evolution 
of the 3D differential equations for the rotator. The one- and two-dimensional maps used in 
this paper are special cases of these equations under different physical conditions. For 
example, under strong dissipation ( F ~  oo) and coupling ( K ~  oo) such that F/K-- ,  1 we 
obtain equation (1) when the applied force is of the form f ( x , )  = (A - 1 ) x , .  
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interval back on itself. The chaotic behavior of this map is examined for 
A e l l ,  oo]. We have computed the correlation dimension D2 (see below) 
and have found that D2 ~ 1.0 for all values of A > 1. 

The nth return map of the circle map is given by fn (X)  = AnX.  Thus, 
X is periodic of period n if and only if A n x  = X + k for some integer k, i.e., 
if and only if x = k / ( A  n - 1), where 0 < k < An. Hence the periodic points 
of period n for the m a p f o f  equation (1) are the (A n -  1)th root of unity. 
It follows that periodic points are dense on the unit interval (Devaney, 
1989). It is important to note that for A an integer the orbits are distributed 
uniformly along the unit interval. 

2.1. The Probability Density on the Circle Map Attractor 

The probability density has been computed numerically for A = 1.1, 
2.0, and 2.5 and is shown in Fig. 1. For A = 2.0 the probability density is 
uniform. In general the probability density is uniform when A is an integer. 
This uniform distribution can be explained in terms of the periodic orbits. 
For A an integer there is a uniform distribution of periodic orbits along the 
unit interval. Hence we would expect a uniform probability. As A tends 

Fig. 1. 
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Probability density P ( X )  vs. X for the circle map. Three values of A are shown, 1.1, 
2.0, and 2.5. 
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toward infinity we also get a uniform probability density because the time 
series is completely random. The entropy is In A. Small entropy corre- 
sponds to a deterministic system and large entropy corresponds to a 
completely random system. For nonintegral A, the peaks in the probability 
distribution can be related to a high concentration of  periodic orbits at that 
position along the interval. 

2.2. The f(~) Spectrum of the Circle Map 

Using the probability density that we calculated in the previous 
section, we can calculate the f(g) spectrum and the corresponding Dq 
spectrum of dimensions for the circle map (Duong-van, 1987). For A = 2.5 
the probability density can be approximated by 

~ 1.28 0.00 < X < 0.25 

,J 1.15 0 . 2 5 < X < 0 . 5 0  
p ( X )  = [ 0 . 8 4  0.50 < X -< 0.60 (3) 

( .0.77 0.60 < X --< 1.00 

We start with this probability and subdivide the interval [0, 1] into n 
segments of size Ii, each with a constant probability Pi = a, where a is now 
the area chosen in the following manner: 

;x  i a = p ( X )  d X  with p ( X )  normalized to 1 (4) 
i - - I  

Given a chosen a, Xi can be calculated. The segment li - -X , . -  X;_ 1 with 
the corresponding P~ = a can now be used in the relation (Duong-van, 
1987) 

1/o pq 
Z l(q- 1)~,~ - 1 (5) 

l l 

to solve for Dq. The numerical results are presented in Fig. 2, where we 
show Dq a s  a function q. Using equation (5), we can compute the 
corresponding f(~) spectrum and this is shown in Fig. 3. For q = 0 we 
simply o b t a i n f  = Do = 1.0, where Do is the Hausdorff dimension of the set. 
The Hausdorff dimension of a one-dimensional unstable manifold is always 
Do = 1.0. Both f(~) and Oq have no essential difference in describing the 
global character, except for the Legendre transform with which they are 
linked: 

d 
c~ = ~qq [(q - 1 ) O q ] ,  f(ct) = q~ - (q - 1)Dq (6) 
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Fig. 2. Dq v s .  q for the circle map with A = 2.5. 

4 0  

We have also evaluated the spectrum of generalized dimensions and the 
f(~) spectrum from the generalized correlation function (Hentschel and 
Procaccia, 1983) and have found the result to be in excellent agreement 
with the analysis above for positive q. For negative q, deviations of a few 
percent are found for the approximate probability distribution [equation 
(3)] used above. 

A similar calculation for A = 2 gives Dq = 1 V q E [ - - ~ ,  0(3]. For this 
value of A = 2 we have an example of a uniform hyperbolic attractor. 
A = 1.1 and 2.5 are examples of nonuniform hyperbolic attractors. Note 
that the probability density is related to the concentration of period orbits 
at a particular point along the interval. 

3. CANTOR SETS 

A large number of strange attractors have a Cantor set underlining 
their structure. In this section we examine Cantor sets from the point of 
view of their spectrum of generalized dimensions and their spectrum of 
Lipschitz-H61der scaling indices. Cantor sets are of fundamental impor- 
tance to the understanding of chaos, as the chaotic attractors of many 
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The function f(ct) vs. �9 for the circle map evaluated at A = 2.5. 

important dynamical systems have such structure [see T61 (1988) for an 
excellent review of the whole area]. We will now review that area of  Cantor 
theory that is pertinent to our analysis. 

If  a measure is constructed from an exact recursive rule, one can easily 
determine the Oq and f(~) spectra. For example, suppose that the measure 
is generated by the following process. Start with the original region which 
has a length one. Divide the region into pieces Si, i = 1, 2 . . . . .  N, with 
probabilities P,. and lengths le. At the first stage we can construct a partition 
function (Halsey et al., 1986) 

r~(z, q ) =  ~ - -  P~ (7) 
i=l I~ 

At the next stage each piece of  the set is further divided into N pieces, each 
with a probability reduced by a factor Pi and the size by a factor l~. At this 
stage the partition function is given by 

F2(z, q) = r~(, ,  q) (8) 

Now it can be seen that the first partition function will generate all the 
others, that is, F ,  = FT. For this reason F1 is called a generator for the set. 
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3.1. The Uniform Cantor Set 

A simple example of a uniform Cantor set is the middle third Cantor 
set. The interval [0, 1] is divided as follows. Start with the unit interval but 
remove the open middle third, i.e., the interval [1/3, 2/3]. Each of the 
remaining intervals receives the same probability measure P = 1/2. This 
procedure is continued indefinitely. Note that 2" open intervals are re- 
moved at the nth stage of this process. Thus for this measure we require 
that 2[(1/2)q/(1/3) ~] = 1, which yields z = (q - 1) In 2/In 3 and Dq = In 2/ 
In 3 (T61, 1988). This Cantor set has a point f 0 0  spectrum, ct = f =  Dq. 
This uniform Cantor set is an example of a simple fractal. Intuitively, a 
fractal is a set which is self-similar under magnification. By varying the 
interval size l;, we can vary the dimension Dq = In P/In l of this Cantor set. 
For Dq = 1 we no longer have the self-similar structure, but a line segment 
of uniform probability. Although this example was trivial, we shall see in 
Section 4 the importance of uniform Cantor sets when we examine two-di- 
mensional chaotic attractors. A more general example of a Cantor set is the 
two-scale Cantor set. 

3.2. Two-Scale Recursive Sets 

Suppose that the measure is generated by the following process. Start 
with original segment with measure one and size one. Divide the region 
into pieces of two sizes and probabilities. Let nl denote the number of 
pieces of length It and n2 the number of length 12. Further, let the respective 
probabilities be Px and P2. The probabilities are normalized such that 
nl PI + n2P2 = 1. The generator is given by 

Fn(z, q) = nl II + pq n 

z(q) is defined through F(z, q ) =  1. A special case to which we refer 
extensively in this paper is the two-scale Cantor set, where nl = 712 - 1. This 
is illustrated in Fig. 4. For l~ = 12 and P~ = P2 we obtain the uniform 
Cantor set discussed in Section 3.1. Using the binomial expansion, we can 
write equation (9) as 

r(q,,)= ~ (n~nTl, t~n-m'PTqP~n-m'q(lrl~n-m')-'(q' ( 1 0 )  
m=o \ m }  

Using the analytic methods of Halsey et al., we obtain the following 
analytic expression for the f(~) spectrum (Halsey et al., 1986): 

ln(n/m - 1) + q ln(P~/P2) 
"r = ( l l )  

ln(/i/12) 
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Fig. 4. The two-scale Cantor set. 

and 

f =  ( n / m  - 1) l n ( n / m  - 1) - (n /m)  In (n /m)  

In(/,) - ( n / m  - 1)In(12) 
(12) 

The Lipschitz-H61der exponents determining the singularity in the mea- 
sure, ~, are determined by (Halsey et al., 1986) 

p,~ p~--m) = (lml(2n- m))c~ (13) 

or, equivalently, 

ln(P1) + ( n / m  - 1) ln(P2) 
= (14) 

ln(10 - ( n / m  - 1) ln(12) 

We have numerically obtained Dq [ =  z(q) / (q  - 1)] as a function of  q by 
solving equation (9) and the result is shown in Fig. 5. In Fig. 5 we show Dq 
as a function of  q for PI = 0.6, 1~ = 0.4, 12 = 0.1, and l~ = 0.1, 0.3, and 0.7, 
respectively. The corresponding f(~) spectra are shown in Fig. 6. For any 
chosen q, the measure scales as ~(q) on a set of  segments which converge to 
a set of  dimensionf(q).  As q is varied, different regions of  the set determine 
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Fig. 5. Dq plotted against q for the two-scale Cantor set, with probabilities PI = 0.6 and 
P2 = 0.4 and length scaling 12 = 0.1. Three different values of the length scale 11 are used, 0.1, 
0.3, and 0.7. 

Dq. The extreme a values are 

D_ ~ = ~max = In P2/ln l 2 and D o~ = ~ m i n  = In P1 / ln  11 (15) 

For q = 0 we simply o b t a i n f  = Do, where Do is the Hausdorff dimension of 
the set. This is the maximum of the graph of f(~). 

Some of the most interesting problems lie on supports of continuous 
measure, including the circle map strange attractor and ordinary differen- 
tial equations. Supports of continuous measure have a Hausdorff dimen- 
sion Do = 1. A unit interval is divided into three segments such that 
ll +/2  + 12 = 1, with probability distributions P1, P2, and P2, respectively 
(T61, 1988). 

To fix our ideas, consider the following example: ll = 0.2 and 12 = 0.4, 
with P1 = 0.1, P2 = 0.45. Note that P2/12 > Pl/ll and/2 > Ii. Although the 
measure on the line segment is rearranged at each step of the recursive 
process, the support for the measure remains at each step the original line 
segment. Thus, as we would expect, Do = 1. The f(~) spectrum for these 
parameters is shown in Fig. 7. The densest regions on the line segment 
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Fig. 6. A plot of  f (~)  vs ~ for the two-scale Cantor  set, with probabilities P~ = 0.6 and 
P2 = 0.4 and length scaling/2 = 0.1. Three different values of the length scale Ii are used, 0.1, 
0.3, and 0.7. 

contract not to one point, but to a set of points of finite dimension. The 
lowest value of ~ and Do is Do~---a = log(0.45)/log(0.4)= 0.87, with a 
corresponding nonzero value o f f =  0.756. Note that there is always only 
one segment at the lowest values of the density, so that we still expect D_ 
to correspond to a value o f f  = 0. It is also possible to construct a Cantor 
set for which the most rarefied region corresponds to a set of finite 
dimension. 

4. THE BAKER'S MAP 

In Sections 4 and 5 we explore chaos in two- and higher-dimensional 
discrete systems. The hypothesis (Wiggins, 1988, and references therein) 
that in two-dimensional hyperbolic systems a chaotic attractor is the 
product of a one-dimensional surface and a one-dimensional Cantor set is 
investigated. We will examine this in detail by obtaining and studying the 
formation and evolution of fractal structure in two-dimensional dynamical 
systems. One of the simplest dynamical systems is the baker's map (Schus- 
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Fig. 7. The function f(ct) for the three-scale Cantor set, with probabilities P~ = 0.1 and 
/~ = P3 = 0.45 and length scalings l~ = 0.1 and 12 =/3  = 0.4. Note that D~ corresponds to a 
nonzero value o f f =  0.756 . . . .  

ter, 1988). The baker's map is fundamental to statistical physics (Arnold 
and Avez, 1968), and both classical and quantum chaos (Balazs and Voros, 
1989). The generalized baker's map is defined (Balatoni and Renji, 1956) 
by the recursion relations on the unit square 

\ Y;+ 1/ / i f  1/2 + R2Xi 
[ \ ( r ,  - s ) / ( 1  - s ) j '  

O < Y < - S  

S < Y < _ I  

(16) 

with R 1 ,  R 2 <  1/2, S < 1. This is a uniformly hyperbolic system. By 
uniform we mean the probability density is constant along the unstable 
manifold, that is, the probability density does not depend on the parame- 
ters R~, R 2, and S. Because it is a hyperbolic map, stable and unstable 
directions are defined everywhere. The strange attractor is the closure of  
the unstable manifolds of  periodic points. The attractor lies along the 
unstable manifold in the Y direction. This manifold consists of an infinite 
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number of line segments. The manifold originates from the periodic orbits. 
The Cantor set is in the X direction. 

4.1. The Relationship of the Baker's Map to Cantor Sets 

Using symbolic dynamics with the partition ~(X, Y) = 1 for Y > S and 
x(X, Y) = 0 for Y < S, we find that every sequence of l's and O's is allowed 
and that there are 2 ~ orbits belonging to an unstable orbit of period n 
(Procaccia, 1987). The eigenvalues of the n-cycle depend only on the 
number of l's and O's in the sequence. Denoting the number of O's by m, 
we find that the Lyapunov scaling factors at the nth iteration are given by 
(Procaccia, 1987; Auerbach et al., 1988; Grebogi et al., 1988) 

~n) = S-m(1 __ S) - (n -m) ,  ~(n) = R,(R~, -m)  (17) 

The partition function is related to the stability of the unstable orbits by 
(Grebogi et al., 1988) 

F(q, Dq) = ~., e ?q~-Wq -1)(q - 1) (18) 

where the sum is over all unstable orbits of period n. Equation (18) can be 
used when the probability density is uniform along the unstable manifold. 
Inserting equation (17) into equation (18), we obtain 

F(q, Dq) = ~ N , ~S"q ( I  - S)(n--m)q(gTR(2n--m) ) --(Dq - - 1 ) ( q - - 1 )  (19) 
m=0 

where N,m is the number of fixed points of the n-times-iterated map which 
belong to periodic orbit with rn O's in its sequence. N,m is the number of 
ways of arranging m zeros and n - m ones, 

Nnm "~--"(~1~) (20) 

Apart from the power ( D q -  1), equation (19) is equivalent to equation 
(10), which was obtained for the two-scale Cantor set. The parameters S, 
(1 - S ) ,  R~, and R2 are related to P~, P2, Ii, and /2, respectively, of the 
two-scale Cantor set, namely, S = PI, 1 - S =/ '2 ,  R~ = I i ,  and R2 =/2 
(Procaccia, 1987). Thus for this baker's map the Cantor structure of the 
attractor can be explicitly obtained. 

For parameters S = 1/2 and R = R~ = R2 the baker's map is equivalent 
to the uniform Cantor set we examined in Section 3.1 with the point f (e)  
spectrum. Attractors belonging to this map are shown in Figs. 8a-8d for 
R =0.1, 0.3, 0.4, and 0.5, respectively. The dimensions Dq are 1.3, 1.58, 
1.75, and 2.0, respectively. The first three are examples of strange attractors 
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Fig. 8. A t t r ac to r s  for the bake r ' s  m a p  wi th  T = 2.0 and  (a)  R = 0.1, (b) R = 0.3, (c) R = 0.4, 
and  (d)  R = 0.5. The  s t ruc ture  o f  these a t t r ac to r s  is re la ted  to  the midd le  th i rd  C a n t o r  set. 

They  are self-s imilar  under  al l  scales of  magni f ica t ion .  

and are self-similar under all scales of magnification. As the parameter R is 
increased, the unstable orbits redistribute, causing changes in the structure 
of the attractor. Since the dimension Dq in the Y direction is constant, the 
increase in dimension and the corresponding change in structure are related 
to changes in the Cantor set. We have established in Section 2 that the 
Hausdorff dimension Do along the unstable manifold is one. Therefore the 
increase in Hausdorff dimension for a two-dimensional system is due to 
changes in the dimension of the Cantor set. 

In this case we can also obtain the generalized entropies and the 
fluctuations around the K entropy as follows (Eckman and Procaccia, 
1986); 

n /7 
( ~srnq(1 -- S) (n-m)q = e x p [ -  n ~ ( q ) ]  

. ,=o \ m ]  
(21) 

where z(q) = (q - 1)Kq = 2q - g(2). Here Kq is the generalized Kolmogorov 
entropy and g(2) the fluctuation spectrum (Schuster, 1988). In the limit 
n ~ oo the largest term in the sum of the right-hand side of equation (21) 
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should dominate. To find this term we note that the maximum occurs when 

r ln (n)smq(1- -  S) (n-m,q 0 (22) 
6m \ m ]  

Using Stirling's approximation, we find 

l n ( n / m  - 1) 
(23) 

q = In( 1 - S) - In(S) 

The fluctuation spectrum is determined by 

( m )  = exp[ng(2)] (24) 

i,e., on applying Stirling's approximation, 

g = In(n /m)  - (1 - re~n) l n (n /m  - 1) (25) 

The exponent determining the singularity in the measure, k, is determined 
by 

smq( 1 - S )  o, - m)q = exp( -- nkq) (26) 

OF 

m In(S) + (n - m) In(1 - S) 
k = (27) 

- n  

Thus, for any chosen q, the measure scales as 2(q) on a set of  segments 
which converge to a set of entropies g(q). As q is varied, different regions 
of  the set determine Kq. In Fig. 9 we show the g(2) spectrum of the baker's 
map for .the parameters S = 0.4, 0.3, and 0.2. 

4.2. The Symbolic Dynamics of the Baker's Map 

Consider the baker's map in the following form (Graham and Hamm, 
t991): 

L \ l _ T ( l _ y i ) ) ,  1f2< r__< 1 

with R~ and R2 < 1. Strange attractors are obtained for 1 < T-< 2 and 
strange repellers for T > 2. In this form the number of  periodic orbits of  
period n is T", independent of  the parameter R. The number of  periodic 
points belonging to periodic orbits of  length n in the map is presented in 
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0.8 

0.0 

I I I 

0 1 2 
k 

Fig. 9. The generalized Kolmogorov entropy fluctuation spectrum g(2) vs. 2 for three 
different values of S, 0.2, 0.3, and 0.4. The range of 2 extends, for fixed S, from - In (S)  to 
--In(1 - S). 

Table I for four values of T, namely T = 1.2, 1.4, 1.8, and 2.0. The smaller 
the value of T, the slower the convergence to the theoretical value T". 

Each orbit has a unique binary label and the periodic points lie on a 
binary tree. Numerically we have determined the periodic points for a 
period up to 54. The partition is at Y = 0.5. The partition is defined by a 
0 for a Y less than 0.5 and a 1 for Y greater than 0.5. Any orbit on the 
attractor can be represented by a pair of numbers y and t5 called the 
symbolic plane (Cvitanovic et al., 1988). ~ and V are defined by 

k 
= 1 - dk 2 - k ,  where dk = ~ (1 -- a_i) mod 2 (29) 

k = l  i=1 

~ = ok2 -k ,  where ck = ~ ai mod 2 (30) 
k ~ l  i f f i l  

The symbolic plane for T = 1.2 is shown in Fig. 10a. The points belonging 
to periodic orbits of length 40 are plotted. The allowed orbits are repre- 
sented by blocks in the symbolic plane. Only even values of period n are 
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Table I. The Number of Periodic Points Belonging to Periodic Orbits of Length n in the 
Baker's Map a 

T Pedod T n N n K~ ) 

1.2 24 80 268 0.2329 
28 164 450 0.2182 
32 341 1020 0.2165 

0.1823 

1.48 24 12197 12654 0.3935 
26 26718 27510 0.3932 
27 39542 38314 0.3913 

0.3920 

1.8 12 1156 1152 0.5874 
14 3748 3782 0.5884 
18 39346 39314 0.5877 

0.5878 

2.0 13 8192 8192 0.6931 
14 16384 16384 0.6931 
15 32768 32768 0.6931 

0.6931 

"The third column is the theoretical value expected from the universal grammar. The fourth 
column is the number of orbits obtained. See text for explanation of the difference. The last 
column is the nth-order approximant of the topological entropy. 

1.0 

,o 0.5 

Fig. lO. 
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1.0 0.0 0.5 l.O 

9' 

The symbolic plane of the baker's map for (a) T = 1.2 and (b) T = 1.4. 

allowed. No itinerary containing any of  the blocks 000 or 111 is allowed. 
In contrast, the symbolic plane for T = 1.4 is shown in Fig. 10b. With 
increasing T the orbits are pruned in a systematic way. In Table II we list 
the low-order forbidden orbits for T = 1.2 and 1.4, respectively. 

In Figs. l l a  and l i b  we show the strange attractor for R = 0.6 and 
T = 1.2 and T = 1.4. It is apparent from these figures that as the parameter 
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Table IL Forbidden Words  in the Symbolic Plane o f  the Baker's 
T =  1.4 
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Map for T =  1.2 and 

T = 1.2 T = 1.4 

Period Forbidden word Period Forbidden word 

3 000 3 000 
3 111 3 111 
6 100100 6 100100 
6 110110 6 110110 
7 1010100 9 110010100 
7 1101010 10 1010010100 
9 110010100 10 1101011010 

10 1010010100 12 101010101100 
I0 1101011010 12 110101010100 
10 1011001100 14 10101001010100 
12 110100110100 14 11010101101010 
12 101100101100 

Fig. 11. 

(a) (b) 
o . e ,  - , . ,  . . . . . . . . .  o . 7  ~-~ ~, . . . . . . . . .  

ff 

J ~.f 
0 . 6  ,:'.!~ :~ 

o . ,  ~ ~f~ 

| |  
o . ,  . . . . . . . . .  , , "  o . a  . . . . . . . .  ~._~.~,~ 

o.~ o . ,  o . e  o . e  o . ,  o . ,  o . e  o . 8  
X X 

Attractors for the baker's map  with R = 0.6 and (a) T = 1.2 and (b) T = 1.4. 

T is decreased, the loss of structure is related to the pruning of the periodic 
orbits. The attractor has a uniform probability in the Y direction and in the 
X direction the stable manifold lies on a pruned Cantor set. 

4.3. The f (~ )  Spectrum of Pruned Cantor Sets 

We have obtained the f (~)  spectrum for R 1 = 0.2 and R2 = 0.3 and for 
three values of T, namely, T = 1.48, 1.8, and 2.0. We can use the following 
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equation to obtain the f (a)  spectrum: 

r(q, z) = ~ NnmT-nq(RTR(zn-m))-~(q) (31) 
m = 0  

where the sum includes only allowed orbits. The allowed orbits are 
specified by N,m. For T < 2 the total number of orbits Am,, is determined 
using the procedure discussed in Auerbach et al. (1988). For T = 1.48 and 
n =27  the following coefficients were obtained: N27,12 = 306, N27,13 = 
19062, N27,14 = 19062, N27,~ 5 = 306. For m < 12 and 15 < m ~ 27 the coeffi- 
cients are zero. After calculating N,,n for a chosen n, z(q) is calculated from 
equation (31) and then the f(c0 spectrum is obtained via the Legendre 
transform, equation (6). The calculated f(~) spectrum is shown in Fig. 12. 
The calculations converge well; in fact, similar results were obtained for 
orbits of  period less than 27. For T =  1.8, orbits of period 18 give the 
following nonzero coefficients: N 1 8 , 6 = 5 4 ,  N 1 8 , 7 = 1 9 8 0 ,  N18,8=9720, 
N18,9---15806, N18,10=9720, N18,11 = 1980, N18,12=54. For m < 6  and 
12 < m -< 18 the coefficients are zero. The resulting f(~) spectrum is also 
shown in Fig. 12. For T -< 1.4 all allowed orbits contribute one ~ value to 
the spectrum, which results in a point spectrum. For T = 1.48 and 1.8, 

1 .6  

1 .4  

1.48 

1 .2  

1 .0  , 

1 . 2  

/ 

! 

1 . 8  

1.4 1.6 
Ot 

Fig. 12. The f(c0 spectrum of the baker's map for the parameters T = 1.48, T = 1.8, and 
T =  2.0. 
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because of the nature of the pruning, ~max and ~mi, correspond to a 
nonzero value off .  The continuous line for T = 2 corresponds to the f(~) 
spectrum for the two-scale Cantor set of equation (9). 

5. THE TWO-DIMENSIONAL HYPERBOLIC TORAL MAP 

In this section, we introduce a completely different class of dynamical 
system, the hyperbolic total map. One difference between these maps and 
those that are discussed elsewhere in this paper is that these maps are 
defined on a torus rather than on Euclidean space. Even though the maps 
are induced by linear maps on Euclidean space, the maps on the tori have 
extremely rich dynamical structure. Previous studies have concentrated on 
the case where the coefficients are integers (Isola, 1990; Vivaldi, 1987; 
Eckmann and Ruelle, 1985; Arnold and Avez, 1968, and references 
therein). 

Consider the hyperbolic toral map LA: T--, T, where 

with a, b, c, and dsN. LA is clearly differentiable, since its Jacobian matrix 
is simply the matrix A, with det(A) = ad  - bc. The eigenvalues are given by 

1 
e+ = ~ {(a + d) + [(a + d)  2 + 4bc - 4ad] m }  (33) 

with eigenvectors of slope c/(e+_ - d).  Only real eigenvalues will be consid- 
ered. When both of the eigenvalues satisfy [el< 1 we have periodic solu- 
tions. The transition from periodic to chaotic behavior corresponds to one 
of the eigenvalues crossing the unit circle. A periodic orbit of period n has 
stability e n. We will now examine the mechanism for chaos in this system. 

5.1. The Development and Evolution of the Strange Attractor of the 2D 
Toral Map 

One of the eigenvalues e~ satisfies le~ 1< 1 and the other 8u satisfies 
leu I> 1. The stable and unstable subspaces W ~ and W u are lines parallel to 
the eigenvectors corresponding to the eigenvalues e, and ~u. The stable and 
unstable subspaces W" and W u are dense in T for each (x, y) ~ T. Previous 
studies of this map have only concentrated on the integer case with 
determinant one. It is commonly stated that the reason W" and W u are 
dense is because they have irrational slope and hence these curves wind 
densely around the torus (Devaney, 1989). 
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In the dissipative case, where the determinant is < 1, there is the 
possibility of chaos in a toral map with rational slope. For example, for the 
parameters a = 1, b = 7/5, c = 2/5, and d = 0 the unstable subspace has 
slope 2/7. Therefore, W" and W u do not wind densely around the torus, but 
we still have chaos, since ]e, I>  1. The subspaces are dense in this case 
because the stable and unstable manifolds emanate from the infinite 
number of periodic orbits. Each orbit of period n has its own subspaces W" 
and W", which may be degenerate with other orbits of  different period. The 
manifold for this system is not continuous, but consists of an infinite 
number of line segments. 

We will now examine the evolution of  structure in the attractor as a 
parameter is varied. Consider the map defined by the parameters arbitrarily 
chosen to be .4 = 1.0, B = 7/5, D = 0.0, and C in the range [0, 1/B]. As 
shown in Fig. 13, by varying C in this range, the Lyapunov dimension DL 
of  the attractor changes from one to two. Shown in Figs. 14a-14d is the 
attractor for C = 1/5, 2/5, 1/2, and lIB = 5/7, respectively. The Lyapunov 
dimensions of these attractors are 1.14, 1.37, 1.52, and 2.0, respectively. 
The dimension of each orbit is equivalent to the global dimension of  the 
attractor. We have computed the spectrum of generalized dimensions Dq 
for q positive and have found that they are constant and equal to DL. It is 

2 . 0  

1 . 5  

1 . 0  

0 . 5  

0 . 0  

- 0 . 5  . . ,  . . . ,  , 

- 0 . 2  0.0 0.2 0.4 
C 

�9 �9 " I ~  ~ 

"1111 
0 . 6  0 . 8  

Fig. 13. The Lyapunov dimension DL vs. the parameter C for the toral map. 
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Fig. 14. 
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T h e  chaot ic  a t t rac tors  o f  the  toral  m ap :  (a)  C = 1/5, (b)  C = 2/5, (c) C = I/2,  and  
(d) C = I /B  = 5/7. 

noteworthy that the nonuniformity of the attractor along the unstable 
manifold has little effect on the dimensions D q .  

6. THE STRUCTURE OF THE ATTRACTOR IN THE 
THREE-DIMENSIONAL TORAL MAP 

In higher dimensions we encounter the possibility of high-dimension 
fractal attractors. Unlike the two-dflaaensional hyperbolic case, we do not 
have any general mathematical theorems to help us obtain the fractal 
structure of these chaotic attractors. However, in certain simple three- 
dimensional mappings we can obtain the fractal structure. Unfortunately 
the explicit characterization of these attractors is not simple. We will now 
consider some of the problems which arise when we try to characterize 
fractal structures in three or higher dimensions. We show that the Lya- 
punov dimension is unreliable as a gauge of the evolution of structure in 
strange attractors, in particular, how the negative Lyapunov exponents can 
produce dramatic effects on the structure of the attractor with no apparent 
change in its Lyapunov (Kaplan-Yorke) dimension DL. Consider the 
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hyperbolic toral map Ls:  S ~ S, 

B -- e (34) 

h 

where the parameters of  this matrix are ~R. The ability to locate the 
unstable manifold is an important property that we will use in this section. 
Let us examine the possible structures that exist in •3. 

The Lyapunov exponents are taken as follows: 21 > 0 > 22 > )].3. For 
the particular case 22 = 23 the Lyapunov dimension DL is DL = 1 --21/22; 
by varying the magnitude of 22 in the range ( - o o ,  -).1/2) the dimension 
DL changes from 1 to 3. The different structures will be examined for this 
range of  dimension. The eigenvalues of the matrix B will be chosen 
together with six of the parameters. The other three will be obtained by 
solving three simultaneous equations. The six parameters are b = 1, c = 
1/4, e =0 ,  f =  1/5, g =0 ,  h = 1. 

In this example the third Lyaponov exponent has no bearing on the 
Lyapunov dimension of the system. The fractal structure of the attractor is 
determined by the eigenvalues which are less than one. I f  the eigenvalues are 
of opposite sign and equal magnitude, we obtain a 2D Cantor set. In 
general it is the sign of  the eigenvalues and their relative magnitude that 
determines the observed structure of the attractor. If  we choose the 
eigenvalues to be el = 1.4, ~2 = 0.7, and ~3 = 0.7, the corresponding Lya- 
punov exponents are 2i = logic,- I. The corresponding parameters which give 
these eigenvalues are a = 1.8219, d = -0 .478668 ,  and i = -0 .421904 .  A 
projection of the attractor onto the Y - Z  plane is shown in Fig. 15. 
No information about the fractal structure is discernible from this 
projection. The eigenvector associated with the eigenvalue el = 1.4 is 
{0.920924, - 0.34166, - 0.18753} r, where {0.920924, - 0.34166, - 0.18753} 7- 
is the transpose of {0.920924, - 0.34166, - 0.18753}. By rotating this eigen- 
vector parallel to the X axis, the attractor will then be viewed in the Y ' - Z "  
plane. The following rotation matrix is used: 

/ Y' = | sin ~ cos ~ 0 Y (35) 

Z '  \ sin/~ cos ~ sin/~ sin ~ cos/~ Z 

The coordinates X', Y', and Z '  denote the rotated frame. The angles of 
rotation are ~ = 0.355257 and/3 = 0.188647. A projection of the attractor 
onto the Y ' - Z '  plane is shown in Fig. 16a. A magnification of the 
indicated region is shown in Fig. 16b. This attractor has a two-dimensional 
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Fig. 15. 
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Fig. 16. The 3D toral map  for the parameters a = 1.8219, d = - 0 . 4 7 8 6 6 8 ,  and i = 
-0 .421904.  (a) The complete attractor. (b) Magnification of  the indicated region. This 
suggests a two-dimensional Cantor  set. 

fractal structure with Lyapunov dimension DL = 1 -  log(l.4)/log(0.7)= 
1.94. A calculation from the rotated time series Y' with 15,000 points gives 
D2~ 1.0 for embedding dimensions of d = 2-12. The rotation of the 
system has reduced the dimension by 1.0, hence D2 ~, 2.0, in agreement 
with the Lyapunov dimension. On the other hand, if we choose the 
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eigenvalues e~ = 1.4, 82 =0.8, and e 3 =--0.8, which gives the parameters 
a =  1.95, d = - 0 . 6 3 2 5 ,  and i = - 0 . 5 5 ,  the Lyapunov dimension is 
D~ = 2.51. Again the attractor is rotated to reveal the two-dimensional 
Cantor set. The phase space attractor is shown in Fig. 17a with a 
magnification shown in Fig. 17b. 

Fig. 17o 
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The 3D toral map at a = 1.95, d = -0.632568, and i = -0.55.  (a) The complete 
attractor. (b) A magnification of the indicated region. 
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Fig. 18. The 3D toral map at a =0.724711, d =  -0.0457843, and i = 1.275295. Due to the 
nature of the Lyapunov exponents, points are repelled along the curves and attract trans- 
versely to the curves. 
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The two-dimensional fractals shown here were obtained from an 
optimum choice of Lyapunov exponents. In the majority of dynamical 
systems there is little control over the magnitude of the Lyapunov exponents. 
When 23 < 22 < 0 < 21 and when 23 is chosen to be a factor of six greater 
than 42, the two-dimensional fractal structure is not apparent. These 
problems can be further illustrated by selecting el = 1.4, e2 = 0.7, and 
~3=-0 .1 ,  which gives a =0.724711, d=-0.0457843,  and i =  1.27529. 
Now the eigenvector associated with el = 1.4 is {-0.742696,-0.16692, 
-1.33863} r. The system is rotated through the angles ~ = -0.221075 and 

= -1.05369. The attractor in the Y ' - Z "  plane is shown in Fig. 18. This 
attractor appears to be one-dimensional; successive magnifications do not 
reveal a two-dimensional structure. The Lyapunov dimension is again 
DL ----- 1.94 and the correlation dimension D2 g 1.0 is obtained from the time 
series Y'. These two examples illustrate how a negative Lyapunov exponent 
can produce dramatic effects on the structure of the attractor with no 
apparent change to its Lyapunov dimension. 

7. CONCLUSIONS 

In this paper we have examined in detail the formation and evolution 
of fractal structure in the chaotic attractors of low-dimensional dynamical 
systems. In Section 2 we examined chaos in detail for the one-dimensional 
circle map. Using periodic enumeration techniques, we obtained the orbit 
structure of the map's attractor. The full spectrum of generalized dimen- 
sions Dq and the f(~) spectrum were also evaluated. For one-dimensional 
mappings the attractor is the closure of the unstable manifold. In Section 
3 we examined Cantor sets in detail from the point of view of their f(~) 
spectra and their Lipschitz-H61der scaling indices. These Cantor sets are 
fundamental to the understanding of chaos in one-, two-, and higher- 
dimensional systems. In Sections 4 and 5 the formation and evolution of 
fractal structure in two-dimensional systems was studied in detail using 
periodic orbit enumeration, generalized dimensional, and f(ct) techniques. 
The Cantor structure was explicitly obtained in a number of cases. In 
particular, in Section 4, using f(~) techniques, we found that the local 
structure in the hyperbolic baker's attractor is the product of a line and a 
Cantor set and the Cantor set was exhibited explicitly. It was established 
that the increase in the Hausdorff dimension Do is due to changes in the 
dimension of the Cantor set. Using a modified version of the baker's map 
which has a pruned Cantor set, we obtained the f(~t) spectrum for a range 
of dynamical parameters. In this particular case the pruning clipped the 
wings of the f(~) spectrum. We have found that the f(~t) spectrum of a 
pruned Cantor set can be efficiently computed once the unstable periodic 
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orbits  are obtained.  The  two- and  three-dimensional  nonun i fo rm hyper-  
bolic toral  maps  have relatively complex  dynamics  and insight into the 
nature  o f  their unstable  manifo lds  has al lowed us to determine the nature  
o f  the underl ining Can to r  sets. These were studied in Sections 5 and 6. In  
three dimensions  these Can to r  sets can have bo th  a one-dimensional  and a 
two-dimensional  structure.  The  p rob lems  in higher-dimension dynamica l  
systems associated with high-dimension fractal  a t t rac tors  were also exam-  
ined and some o f  the difficulties with the explicit character izat ion o f  these 
a t t rac tors  were addressed.  It  was  shown how a negative L y a p u n o v  expo-  
nent  can produce  d ramat ic  effects on the s tructure o f  the a t t rac tor  with no 
appa ren t  change to its L y a p u n o v  dimension.  
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